376 research outputs found

    A polytope related to empirical distributions, plane trees, parking functions, and the associahedron

    Full text link
    We define an n-dimensional polytope Pi_n(x), depending on parameters x_i>0, whose combinatorial properties are closely connected with empirical distributions, plane trees, plane partitions, parking functions, and the associahedron. In particular, we give explicit formulas for the volume of Pi_n(x) and, when the x_i's are integers, the number of integer points in Pi_n(x). We give two polyhedral decompositions of Pi_n(x), one related to order cones of posets and the other to the associahedron.Comment: 41 page

    Interaction between a cantilivered-free flexible plate and ideal flow

    Get PDF
    We develop a new computational model of the linear fluid-structure interaction of a cantilevered flexible plate with an ideal flow in a channel. The system equation is solved via numerical simulations that capture transients and allow the spatial variation of the flow-structure interaction on the plate to be studied in detail. Alternatively, but neglecting wake effects, we are able to extract directly the system eigenvalues to make global predictions of the system behaviour in the infinite-time limit. We use these complementary approaches to conduct a detailed study of the fluid-structure system. When the channel walls are effectively absent, predictions of the critical velocity show good agreement with those of other published work. We elucidate the single-mode flutter mechanism that dominates the response of short plates and show that the principal region of irreversible energy transfer from fluid to structure occurs over the middle portion of the plate. A different mechanism, modal-coalescence flutter, is shown to cause the destabilisation of long plates with its energy transfer occurring closer to the trailing edge of the plate. This mechanism is shown to allow a continuous change to higher-order modes of instability as the plate length is increased. We then show how the system response is modified by the inclusion of channel walls placed symmetrically above and below the flexible plate, the effect of unsteady vorticity shed at the trailing edge of the plate, and the effect of a rigid surface placed upstream of the flexible plate. Finally, we apply the modelling techniques in a brief study of upper-airway dynamics wherein soft-palate flutter is considered to be the source of snoring noises. In doing so, we show how a time-varying mean flow influences the type of instability observed as flow speed is increased and demonstrate how localised stiffening can be used to control instability of the flexible plate. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved

    Dynamic Transmission Modeling:A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-5

    Get PDF
    AbstractThe transmissible nature of communicable diseases is what sets them apart from other diseases modeled by health economists. The probability of a susceptible individual becoming infected at any one point in time (the force of infection) is related to the number of infectious individuals in the population, will change over time, and will feed back into the future force of infection. These nonlinear interactions produce transmission dynamics that require specific consideration when modeling an intervention that has an impact on the transmission of a pathogen. Best practices for designing and building these models are set out in this article

    Cost-Effectiveness of Pediatric Influenza Vaccination in The Netherlands

    Get PDF
    Objective: This study evaluates the cost-effectiveness of extending the Dutch influenza vaccination program for elderly and medical high-risk groups to include pediatric influenza vaccination, taking indirect protection into account. Methods: An age-structured dynamic transmission model was used that was calibrated to influenza-associated GP visits over 4 seasons (2010-2011 to 2013-2014). The clinical and economic impact of different pediatric vaccination strategies were compared over 20 years, varying the targeted age range, the vaccine type for children or elderly and high-risk groups. Outcome measures include averted symptomatic infections and deaths, societal costs and quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios. Costs and QALYs were discounted at 4% and 1.5% annually. Results: At an assumed coverage of 50%, adding pediatric vaccination for 2to 17-year-olds with quadrivalent live-attenuated vaccine to the current vaccination program for elderly and medical high-groups with quadrivalent inactivated vaccine was estimated to avert, on average, 401 820 symptomatic cases and 72 deaths per year. Approximately half of averted symptomatic cases and 99% of averted deaths were prevented in other age groups than 2to 17-year-olds due to herd immunity. The cumulative discounted 20-year economic impact was 35 068 QALYs gained and V1687 million saved, that is, the intervention was cost-saving. This vaccination strategy had the highest probability of being the most cost-effective strategy considered, dominating pediatric strategies targeting 2to 6-year-olds or 2to 12-year-olds or strategies with trivalent inactivated vaccine. Conclusion: Modeling indicates that introducing pediatric influenza vaccination in The Netherlands is cost-saving, reducing the influenza-related disease burden substantially

    Estimating arthropod survival probability from field counts: a case study with monarch butterflies

    Get PDF
    Survival probability is fundamental for understanding population dynamics. Methods for estimating survival probability from field data typically require marking individuals, but marking methods are not possible for arthropod species that molt their exoskeleton between life stages. We developed a novel Bayesian state‐space model to estimate arthropod larval survival probability from stage‐structured count data. We performed simulation studies to evaluate estimation bias due to detection probability, individual variation in stage duration, and study design (sampling frequency and sample size). Estimation of cumulative survival probability from oviposition to pupation was robust to potential sources of bias. Our simulations also provide guidance for designing field studies with minimal bias. We applied the model to the monarch butterfly (Danaus plexippus), a declining species in North America for which conservation programs are being implemented. We estimated cumulative survival from egg to pupation from monarch counts conducted at 18 field sites in three landcover types in Iowa, USA, and Ontario, Canada: road right‐of‐ways, natural habitats (gardens and restored meadows), and agricultural field borders. Mean predicted survival probability across all landcover types was 0.014 (95% CI: 0.004–0.024), four times lower than previously published estimates using an ad hoc estimator. Estimated survival probability ranged from 0.002 (95% CI: 7.0E−7 to 0.034) to 0.058 (95% CI: 0.013–0.113) at individual sites. Among landcover types, agricultural field borders in Ontario had the highest estimated survival probability (0.025 with 95% CI: 0.008–0.043) and natural areas had the lowest estimated survival probability (0.008 with 95% CI: 0.009–0.024). Monarch production was estimated as adults produced per milkweed stem by multiplying survival probabilities by eggs per milkweed at these sites. Monarch production ranged from 1.0 (standard deviation [SD] = 0.68) adult in Ontario natural areas in 2016 to 29.0 (SD = 10.42) adults in Ontario agricultural borders in 2015 per 6809 milkweed stems. Survival estimates are critical to monarch population modeling and habitat restoration efforts. Our model is a significant advance in estimating survival probability for monarch butterflies and can be readily adapted to other arthropod species with stage‐structured life histories

    Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice

    Get PDF
    The use of artificial intelligence will likely transform clinical practice over the next decade and the early impact of this will likely be the integration of image analysis and machine learning into routine histopathology. In the UK and around the world, a digital revolution is transforming the reporting practice of diagnostic histopathology and this has sparked a proliferation of image analysis software tools. While this is an exciting development that could discover novel predictive clinical information and potentially address international pathology work-force shortages, there is a clear need for a robust and evidence-based framework in which to develop these new tools in a collaborative manner that meets regulatory approval. With these issues in mind, the NCRI Cellular Molecular Pathology (CM-Path) initiative and the British In Vitro Diagnostics Association (BIVDA) has set out a roadmap to help academia, industry and clinicians develop new software tools to the point of approved clinical use. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.

    Delaying the International Spread of Pandemic Influenza

    Get PDF
    BACKGROUND: The recent emergence of hypervirulent subtypes of avian influenza has underlined the potentially devastating effects of pandemic influenza. Were such a virus to acquire the ability to spread efficiently between humans, control would almost certainly be hampered by limited vaccine supplies unless global spread could be substantially delayed. Moreover, the large increases that have occurred in international air travel might be expected to lead to more rapid global dissemination than in previous pandemics. METHODS AND FINDINGS: To evaluate the potential of local control measures and travel restrictions to impede global dissemination, we developed stochastic models of the international spread of influenza based on extensions of coupled epidemic transmission models. These models have been shown to be capable of accurately forecasting local and global spread of epidemic and pandemic influenza. We show that under most scenarios restrictions on air travel are likely to be of surprisingly little value in delaying epidemics, unless almost all travel ceases very soon after epidemics are detected. CONCLUSIONS: Interventions to reduce local transmission of influenza are likely to be more effective at reducing the rate of global spread and less vulnerable to implementation delays than air travel restrictions. Nevertheless, under the most plausible scenarios, achievable delays are small compared with the time needed to accumulate substantial vaccine stocks

    The ovarian follicle of ruminants: The path from conceptus to adult

    Get PDF
    This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the \u27adipokinome\u27 as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the \u27methane efficiency\u27 of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought

    Validation of Permeability and Relative Permeability Data Using Mercury Injection Capillary Pressure Data

    Get PDF
    This paper reports on a study with the objective to validate a set of core analysis data using a combination of mercury injection capillary pressure (MICP) data and statistical correlation techniques. The data set is from an off-shore reservoir in Atlantic Canada. Analysis of this reservoir was complicated by the fact that the permeabilities of the samples were high, greater than 2400 mD. The analysis was done using an existing data set, not a data set specifically tailored for the techniques used in the analysis. The data analyzed included samples that represented seven zones in a single well. Porosities and permeabilities were available for the MICP samples. Electrical properties, along with porosities and permeabilities, were available on samples from each zone, but not from the same depths as the MICP samples. Steady-state relative permeabilities (SSRP) were available for stacked samples in each zone; one of the samples in the stack was a companion sample for one of the MICP samples from that zone. The MICP results were used to validate the permeability measurements using both the Swanson method (SM) and the Ruth-Lindsay-Allen (RLAM) method. The SM, using published correlation parameters, significantly under-predicted the permeabilities; the RLAM, which uses no correlation parameters, gave predictions within a maximum error of just over 33% and a mean error of -12%. The MICP data was used to validate the shapes of the SSRP curves using the Gates and Tempelaar-Lietz method (GT-LM), the Burdine method (BM), and a modified Burdine method (MBM). The GT-LM, which uses no correlation parameters, provided good predictions of the wetting phase SSRP curves but very poor predictions of the non-wetting phase SSRP curves. The BM, using published correlation parameters, provided poor predictions of the wetting phase SSRP curves but improved predictions of the non-wetting phase SSRP curves. The MBM provided good predictions of the wetting phase SSRP curves and acceptable predictions of the non-wetting phase SSRP curves. The MBM method does use a correlation parameter but a single value was used for all seven zones. This work provides a protocol for validating core analysis data that can be implemented in a straightforward manner to determine the “quality” of the data. The results emphasize the importance of MICP as an experimental technique. A proposed modified workflow is presented that would optimize the validation protocol
    corecore